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a b s t r a c t

To find relational facts of interest from plain texts, distantly supervised relation extraction (DSRE) has
drawn significant attention. Recent works exploit relation hierarchies to mine more clues for long-
tail relations and achieve good performance. However, they ignore or underutilize the correlation
of relations in the hierarchical structure. Empirically, the correlation facilitates knowledge transfer
between different relations to further handle long-tail relations and improves inter-relational discrim-
ination. In this paper, we devise an end-to-end network to model the correlation of relations from
two perspectives. Globally, we construct an undirected connected graph according to the relation
hierarchies, and employ Graph Attention Networks (GATs) to aggregate node information and generate
correlation-aware Global Hierarchy Embeddings (GHE). Locally, we assume that along the relation
hierarchies, the classification results of adjacent levels should be highly interdependent, and introduce
a constraint called Local Probability Constraints (LPC) to take it into account. LPC is then combined
with a branch network for both sentence-level and bag-level classification. Experimental results
on the popular New York Times (NYT) dataset show that, our model GHE-LPC outperforms other
state-of-the-art baselines in terms of AUC, Top-N precision, accuracy of Hits@K, etc.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Various large-scale knowledge bases (KBs) such as YAGO [1],
reebase [2] and DBpedia [3] have been proven to play an im-
ortant role in many natural language processing (NLP) tasks,
et current KBs are still far from complete compared with real-
ord facts. In this case, learning to extract facts of interest from
lain texts (i.e., relation extraction, RE) is a very important task.
ecently, supervised methods are widely used to solve it due
o their relatively high performance. Such methods, however,
lways require large-scale training data which is time-consuming
nd laborious to obtain. One common technique for coping with
his difficulty is distant supervision (DS) [4] which generates
raining data via aligning KBs and massive plain texts. It assumes
hat if two entities have a relation in KBs, then all sentences that
ention these two entities will be labeled as training sentences for

his relation.
In distant supervision scenario, two problems have to be ad-

ressed. The main one is wrong labeling problem caused by its

∗ Corresponding authors.
E-mail addresses: l.yue@uq.edu.au (L. Yue), liulu@jlu.edu.cn (L. Liu).
ttps://doi.org/10.1016/j.knosys.2021.107637
950-7051/© 2021 Elsevier B.V. All rights reserved.
strong assumption. For example, <Google, Sergey Brin>expresses
the /business/company/founders relation in Freebase. So, the sen-
tence ‘‘Sergey Brin, Google’s president for technology, said the rate
of hiring had slowed.’’ will be incorrectly labeled as a training
instance. The other one is long-tail problem. Training data gen-
erated by DS can only cover a limited part of real-word relations.
For example, if we treat relations with training instances less
than 1000 as long-tail relations, over 70% of the relations in
NYT dataset are long-tail and still suffer from data deficiency.
Over the past few years, to alleviate the effects of mislabeled
sentences, Riedel et al. [5] and Hoffmann et al. [6] develop the
multi-instance learning (MIL) framework, which identifies a la-
bel between two entities for a bag of sentences. Following the
MIL framework, many efforts have been devoted to alleviate the
impact of noisy supervised signals during the training phase, in-
cluding attention mechanism [7–9], soft-labeling [10], reinforce-
ment learning [11,12], etc. For the long-tail problem, a natural
idea is to exploit the relation hierarchies to transfer knowledge
between data-rich relations and long-tail ones [13–16]. Take the
relation /people/family/members in Freebase as an example, it has
two ancestor relations, i.e., /people and /people/family. Like this,
all relations form a tree-like hierarchical structure, i.e., relation

hierarchies.
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However, the above methods ignore or underutilize the corre-
lation between relations, which is defined as the ‘‘relation of rela-
tions (ROR)’’ phenomenon by Jin et al. [17]. Some of them assume
that relations are discrete and independent of each other [7–
12]. Others simply define relation embeddings for different levels
of relation hierarchies as query vectors to augment the sen-
tence representations or to obtain multi-level representations
for sentence bags [13–16], in which relation embeddings are
randomly initialized and the different levels do not affect each
other in the calculation. Here the correlation of relations refers
to two aspects: (1) the interdependence between different levels
of relation hierarchies and (2) the mutual heuristic effect between
sibling relations within the same levels. Empirically, modeling the
correlation facilitates knowledge transfer between different re-
lations to further alleviate the long-tail problem and improves
inter-relational discrimination. In this paper, we fully exploit the
correlation of relations with two strategies. In the global view, we
treat the relation hierarchies as an undirected connected graph,
and employ Graph Attention Networks (GATs) to aggregate node
information. Specifically, each relation of relation hierarchies con-
stitutes a node of the input graph. During the calculation, each
relation receives information from itself, its father relation and its
children relations. Then correlation-aware relation embeddings,
called Global Hierarchy Embeddings (GHE) are generated. In the
local view, we introduce a constraint called Local Probability
Constraints (LPC). It assumes that along the relation hierarchies, the
classification results of adjacent levels should be highly interdepen-
dent. Specifically, along the relation hierarchies, we first use the
current level’s classification probability to construct the expected
classification probability for other adjacent levels. Then, for each
pair of adjacent levels, we compute the similarity of classification
probabilities to take the interactions between adjacent levels into
account. Finally, LPC is combined with a branch network for
sentence-level and bag-level classification. Unlike existing works
that utilizes pre-trained relation embeddings, our model is an
end-to-end network. The main contributions of this paper are
summarized as follows:

• To the best of our knowledge, our model is the first approach
to explicitly model ‘‘the correlation of relations’’ on DSRE
task, which fully leverages the relation hierarchies and ad-
dresses both wrong labeling problem and long-tail problem
in distant supervision scenario.

• We model the correlation of relations from two perspec-
tives. Globally, we construct an undirected connected graph
according to the relation hierarchies, and employ Graph
Attention Networks as Hierarchy Structure Encoder to ag-
gregate relation information in order to obtain the global
relation embeddings.

• Locally, we introduce a constraint called Local Probability
Constraints (LPC), which is combined with a branch net-
work for hierarchical classification. LPC aims to take the
local correlation of relations into account by modeling the
interdependencies between the classification probabilities
of adjacent levels.

• Substantial experiments on the popular New York Times
(NYT) dataset are conducted. Our method achieves state-of-
the-art performance in terms of multiple metrics. The source
code of this work will be released at https://github.com/
RidongHan/GHE-LPC.

2. Related work

Distantly supervised relation extraction (DSRE). Although distant
supervision (DS) can generate large-scale training data and ad-
dress the drawback of supervised methods that rely on large
2

amounts of training instances, it may bring some mislabeled
sentences. To alleviate this, Riedel et al. [5], Hoffmann et al.
[6] and Surdeanu et al. [18] relax the assumption behind DS
and remodel DSRE by multi-instance learning (MIL). Following
the MIL setting, Zeng et al. [19] design the piecewise convo-
lutional neural networks (PCNNs) and select the sentence that
is most likely to correctly express the specified relation during
the training phase. Lin et al. [7] utilize attention mechanism
to obtain the bags’ representations by giving sentences differ-
ent weights. Inspired by the above methods, many subsequent
efforts have been devoted to alleviate the impact of noisy super-
vised signals, including word attention [8], multi-level structured
self-attention [9], bag-level attention [20,21], feature-level atten-
tion [22], segment attention [23], etc. To fully exploit entity infor-
mation, multi-feature fusion with entity sense [24] and dynamic
adjustment of parameters according to entity types [25] are good
ideas. For relation information, semantic scenarios are also very
vital [26]. Besides, reinforcement learning-based approaches to
select correctly labeled sentences from noisy sentence bags also
achieve good performance [11,12].

Hierarchical relation extraction. Hierarchical relation extraction
focuses on exploiting relation hierarchies for knowledge transfer
between data-rich relations and long-tail ones to handle long-
tail relations. Han et al. [13] use coarse-to-fine grained relation
embeddings as queries to perform a hierarchical attention along
the relation hierarchies. Then Zhang et al. [14] enhance the above
multi-granular relation embeddings by merging the embeddings
from both pre-trained TransE [27] and graph convolutional net-
works [28]. Most recently, Li et al. [15] design a collaborating
relation-augmented attention network to augment sentence rep-
resentations, while Yu et al. [16] adopt a top-down classification
strategy along the hierarchical relation chains.

Graph representation learning. Graph representation learning is
an important research topic because graph data is widely avail-
able in the real world and many current tasks involve the pro-
cessing of graph data. Specific types of graphs include social
networks [29], knowledge graphs [30], protein–protein interac-
tion networks [31], and so on. In this paper, relation hierarchies
can also be seen as a graph. To obtain the representations of
nodes, graph neural networks (GNNs) are widely used, such as,
graph convolutional networks (GCNs) [32] and graph attention
networks (GATs) [33]. For more complex graphs, Chen et al.
[34] focus on solving the ‘‘oversmoothing’’ problem in attributed
network representation learning, while Li et al. [35] model the
coupling and interaction phenomena. More information can be
found in [36].

3. Our proposed approach

3.1. Task definition

Following the MIL setting, all sentences can be split into mul-
tiple bags, i.e., {B1, B2, . . .}, according to the common entity-pairs.
ach bag Bi contains some sentences {s1, s2, . . . , sm} mentioning
he same entity pair ⟨hi, ti⟩. Each sentence is a sequence of to-
ens of length n obtained by truncating or padding, i.e., sj =

w1, w2, . . . , wn]. Based on the above definitions, distantly su-
ervised relation extraction aims to select a relation label for a
entence bag from the pre-defined relation set R = {r1, r2, . . .}.

3.2. Model architecture

As shown in Fig. 1, our model includes four components: (1)
The Entity-Aware Embedding module [37] for highlighting the
essence of entities by merging entity embeddings and position

https://github.com/RidongHan/GHE-LPC
https://github.com/RidongHan/GHE-LPC
https://github.com/RidongHan/GHE-LPC
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Fig. 1. The overview of our proposed RE model, GHE-LPC.
embeddings into word embeddings. (2) A sentence encoder based
on piecewise convolutional neural networks (PCNNs) [19] for
generating sentence representations. (3) The Hierarchy Struc-
ture Encoder for obtaining correlation-aware relation embed-
dings, i.e., Global Hierarchy Embeddings (GHE). (4) A Branch
Network with Local Probability Constraints for sentence-level and
bag-level classification. It generates more valuable bag represen-
tations and meanwhile captures local correlation of relations to
alleviate long-tail problem.

3.3. Entity-aware embedding

Following Li et al. [37], to yield more expressively-powerful
representations for downstream modules, we integrate word
embeddings [38], position embeddings [39] and entity embed-
dings [37]. The integration has been proven useful and powerful.
The details are as follows.

Given a bag of sentences B = {s1, s2, . . . , sm}, for
∈ [1, 2, . . . ,m], each sentence sj = [w1, w2, . . . , wn], can be

converted into low-dimensional, real-valued vector embeddings
using a pre-trained word2vec model [38], i.e., V =

v1, v2, . . . , vn] ∈ Rdw×n, where dw denotes the dimension of
word embedding.

Relative position information is introduced to RE task by Zeng
et al. [39]. This feature can be modeled by the relative distances
from the current word to head entity h and tail entity t . For
instance, in the sentence ‘‘Alberto Lattuada was born in Milan
in 1914.’’, the relative distance from born to entity h (Alberto
Lattuada) and entity t (Milan) are 2 and -2, respectively. Then, two
distances are transformed into low-dimensional vectors, xphi and
pt
i ∈ Rdp , where dp is the dimension of position embedding. Con-
equently, position-aware embeddings can be denoted as F (p)

=

xp1, x
p
2, . . . , x

p
n] ∈ R(dw+2dp)×n, where xpi = [vi; x

ph
i ; xpti ], i ∈

[1, 2, . . . , n], ‘‘;’’ denotes the operation of vector concatenation.
Besides, to highlight the essence of entities for RE task, the se-

quence of entity embeddings can be defined as F (e)
=

[xe1, x
e
2, . . . , x

e
n] ∈ R3dw×n, where xei = [vi; vh; vt ], i ∈ [1, 2, . . . , n],

vh and vt are head and tail entity embeddings. Finally, to integrate
these three features, a position-wise gate is employed [37], i.e.,

(e) (e) (e)
α = sigmoid(λ · (W F + b )), (1)

3

F̃ (p)
= tanh(W (p)F (p)

+ b(p)), (2)

X = α ◦ F (e)
+ (1 − α) ◦ F̃ (p), (3)

in which W (e)
∈ Rdx×3dw , W (p)

∈ Rdx×(dw+2dp), ‘‘◦’’ denotes
Hadamard Product and λ is a hyper-parameter to highlight the
importance of entities. And X = [x1, x2, . . . , xn] ∈ Rdx×n is the
resulting input representations specially for sentence sj.

3.4. Piecewise convolutional neural networks

The piecewise convolutional neural networks (PCNNs) are first
proposed by Zeng et al. [19]. Then PCNNs become the most com-
monly used sentence encoder in the RE task. Specifically, it firstly
encodes the input representation X using the convolution opera-
tion with window size ω and generates the feature representation
f , where f ∈ Rdc×n and dc is the number of feature maps. Then,
according to the position of head and tail entities, the feature f
is divided into three segments {f (1), f (2), f (3)}. The max-pooling
procedure finally is performed in each segment separately to
obtain the final sentence representation u, i.e.,

f = 1D_CNN(X), (4)

u = [max(f (1));max(f (2));max(f (3))], (5)

where u ∈ Rdf , df = 3dc .

3.5. Hierarchy structure encoder

To capture the correlation of relations from a global perspec-
tive, we construct an undirected connected graph according to
the relation hierarchies and employ graph attention networks
(GATs) [33] as hierarchy structure encoder to aggregate relation
information on the graph. The output of GATs can be denoted as
correlation-aware relation embeddings (i.e., Global Hierarchy Em-
beddings, GHE). Next we first introduce the relation hierarchies
graph, and then the details of GATs.

3.5.1. Relation hierarchies graph
For a relation r ∈ R, we can generate its hierarchical chain

of parent relations {r0, r1, . . . , rk}, where r0 denotes the root
relation node and rk is identical to r . The smaller the index,

the higher the relation level. Due to the existence of the root
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ode, all chains form tree-like relation hierarchies. Then each
elation is treated as one node, we can quickly construct the
elation hierarchies graph, i.e., an undirected connected graph G.
he number of nodes is denoted as z.

.5.2. Graph attention networks (GATs)
To process the data represented in graph domains, Kipf and
elling [32] present graph convolutional networks (GCNs) to

ather information from the neighbor nodes. However, all neigh-
or nodes are treated equally during the calculation. To address
his drawback, Veličković et al. [33] propose graph attention
etworks (GATs), which learn to assign different degrees of im-
ortance to neighbor nodes. Generally, GATs consist of some
tacked graph attentional layers. Each layer, specifically, takes the
eature representations of all nodes in the graph as input, which
an be denoted as L = [l1, l2, . . . , lz], li ∈ Rdg , i ∈ [1, 2, . . . , z],
nd outputs transformed embeddings of all nodes. Note that the
eature representations of all nodes (i.e., relation embeddings) are
nitialized randomly at first. The process of graph attentional layer
an be described as follows.

ij = softmax(ATT (Wli,Wlj)), (6)

here i/j ∈ [1, 2, . . . , z], αij is the attention score of node li for lj,
∈ Rdg×d′

g is a learnable weight matrix to increase nonlinearity
y transforming the features to a higher dimensional space, and
TT (·) denotes any kind of attention function. In this paper, we
efine the ATT (·) function as LeakyReLu(W T

att [Wli;Wlj] + batt ),
here LeakyReLu(·) is the activation function and Watt ∈ R2d′

g . See
ection 4.5 for more details on ATT (·). Then the output features
re defined as the weighted summation of transformed input
eatures, i.e.,
′
= [l′1, l

′

2, . . . , l
′

z], (7)

′

i = σ

⎛⎝∑
j∈Ni

αijWlj

⎞⎠ , i ∈ [1, 2, . . . , z], (8)

here Ni consists of all neighbor nodes that have edges with li.
The above learning process may be unstable, to address this

rawback, multi-head attention can be leveraged as Vaswani
t al. [40]. When using multi-head self-attention, the resulting
utput feature representations are defined as one of the following
quations,

′

i =
⏐⏐⏐⏐H

h=1σ

⎛⎝∑
j∈Ni

αijWlj

⎞⎠ or l′i = σ

⎛⎝ 1
H

H∑
h=1

∑
j∈Ni

αijWlj

⎞⎠ , (9)

where
⏐⏐⏐⏐ denotes vector concatenation operation and H is the

number of heads. In this paper, the second way is adopted.
After using GATs to obtain the Global Hierarchy Embeddings

(GHE), we put together the embeddings of the same level in the
relation hierarchies, and define global relation embedding matrix
for each level, i.e., R(i)

∈ Rd′
g×N i

R , i ∈ [1, 2, . . . , k], where N i
R

denotes the number of distinct relations of the ith level.

3.6. Branch network with local probability constraints

For a bag of sentences B = {s1, s2, . . . , sm}, we already obtain
he sentence representations U = {u1, u2, . . . , um} through the
CNN encoder. To further exploit the correlation of relations from
local perspective, a novel constraint called Local Probability
onstraints is proposed. It is combined with a branch network
or classification. Next We first describe our base branch network,
nd then introduce Local Probability Constraints.
4

3.6.1. Base branch network
In this section, we choose collaborating relation-augmented

attention network (CoRA) [15] as the base branch network. It
takes both sentence-level and bag-level supervised signals into
consideration.

On the one hand, for a sentence, it predicts the relation label
for each level in relation hierarchies. Specifically, each sentence
representation u ∈ U1 matches with each level’s global relation
embedding matrix described in to obtain the matching degree
vector, i.e.,

α(i)
= softmax(uTR(i)), i ∈ [1, 2, . . . , k], (10)

here softmax(·) denotes a normalization function along last
imension.
On the other hand, the base branch network identifies a re-

ation label for a bag of sentences. In details, firstly, the relation
mbeddings are used to obtain relation-aware information by dot
roduct, i.e.,
(i)

= R(i)α(i), i ∈ [1, 2, . . . , k], (11)

here c(i) is the relation-aware information.
After that, this information is leveraged to augment the sen-

ence representation. Specifically, for i ∈ [1, 2, . . . , k], we merge
c(i) into u by an element-wise gate with residual connection [41]
and layer normalization [42] to generate the ith level’s aug-
mented representation u(i),

β (i)
g = sigmoid(W T

g [u; c(i)] + bg ), (12)

û(i)
= β (i)

g ◦ u + (1 − β (i)
g ) ◦ W T

c c
(i), (13)

u(i)
= LayerNorm(u + MLP(û(i))), (14)

where Wg ∈ R(df +d′
g )×df ,Wc ∈ Rd′

g×df , MLP(·) denotes a multi-
layer perceptron to increase nonlinearity.

Then all levels’ augmented representations {u(1), u(2), . . . , u(k)
}

are concatenated as the resulting relation-augmented sentence
representation ur corresponding to u, i.e., ur

= [u(1)
; u(2)

; ...; u(k)
].

All relation-augmented sentence representations of the bag B are
represented as Br

= [ur
1, u

r
2, . . . , u

r
m] ∈ Rkdf ×m.

Next moving to wrong labeling problem, the
attention-pooling, a kind of self-attention [43,44], is leveraged
to derive an accurate bag-level representation. It learns to as-
sign an importance score to each sentence according to its aug-
mented representations ur and performs a weighted sum over all
relation-augmented sentence representations of a bag,

b = Br softmax(W T
attB

r ) ∈ Rkdf , (15)

where Watt ∈ Rkdf is a learnable weight matrix.
Finally, a softmax classifier is employed. It takes the bag rep-

resentation b as input, and calculates the confidence score of each
relation label,

ob = P(r̂|eh, et , B) = softmax(MLP(b)), (16)

where ob ∈ R|R|, |R| denotes the number of pre-defined relations.

3.6.2. Local probability constraints
During the above calculation, each level will have a classifica-

tion probability, i.e. α(i). We assume that along the relation hier-
archies, the classification results of adjacent levels should be highly
interdependent, and devise a novel training constraint, called Local
Probability Constraints (LPC). The illustration of LPC is shown in
Fig. 2.

In details, for ith level, i ∈ [2, . . . , k], the predicted probability
vector can be denoted as α(i)

= [α
(i)
1 , α

(i)
2 , . . . , α

(i)
N i
R
]. Based on

1 For a clear demonstration, we omit indices in the following instructions.
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Fig. 2. The illustration of LPC.

(i) and the relation hierarchies, we can construct the expected
robability distribution α

(i−1)
e for the previous level. Specifically,

along the relation hierarchies, if category c has nc sub-categories,
we can use the probability sum of these nc sub-categories as the
robability of category c . In this way, the expected distribution

α
(i−1)
e = [α

(i−1)
1 , α

(i−1)
2 , . . . , α

(i−1)
N i−1
R

] can be generated. The objective
function is defined as follows,

Llpc = −
1

|D| × |B| × (k − 1)

∑
B∈D

∑
s∈B

k∑
l=2

KL(α(i), α(i−1)
e ), (17)

here D is the training set consisting of sentence bags and KL(·)
enotes the Kullback–Leibler divergence.

.7. Training objectives

The main objective for DSRE is defined to minimize a cross-
ntropy loss on the bag-level’s prediction, i.e.,

re = −
1

|D|

∑
B∈D

log P(r̂|eh, et , B). (18)

Besides, sentence-level supervised signals have been proven
to be very helpful for DSRE [15]. An auxiliary loss is introduced
to leverage these signals and guide our model to augment each
sentence with correct relation embeddings. That is,

Lhier = −
1

|D| × |B| × k

∑
B∈D

∑
s∈B

k∑
l=1

logα
(l)
[r l]

, (19)

here [·] denotes taking the value according to the index. Finally,
he overall loss function can be defined as:

= Lre + µLhier + ξLlpc + δ∥θ∥
2
2, (20)

here µ, ξ and δ are trade-off parameters. ∥θ∥
2
2 denotes the

regularizer defined as L2 normalization.

4. Experiments and results

We choose the widely used dataset, New York Times (NYT) to
conduct our experiments. We choose it for the following reasons:
(1) It has been used in almost all previous works [7,13,15,16,37]
for DSRE task and is the only widely used DSRE dataset. (2)
The wrong labeling problem and long-tail problem are extremely
serious, which makes it suitable for our evaluation. (3) For other
datasets generated by DS, such as GIDS [45], Wiki-KBP [46] and
NYT-H [47], the GIDS dataset has no long-tail phenomenon; the
Wiki-KBP dataset is specific to the joint extraction task and is
not fully suitable for the task of this paper; the NYT-H dataset is
simply subset variants of NYT, and the results of all approaches on
5

it are all very high and not comparable due to its extremely small
size of the test data. (4) Although our proposed approach should
intuitively work on datasets containing fewer long-tail relations
as long as the relation hierarchies exist, some datasets do not
have taxonomic hierarchies, which is the case of the Wiki-KBP
dataset above. In summary, the NYT dataset is the most suitable.

The NYT dataset [5]2 is generated by aligning the corpus of
New York Times with Freebase [2] and has been used by Lin et al.
[7] and Li et al. [15]3. The sentences from the years 2005–2006
are used as train set, the rest sentences from the year 2007 are
used as test set. In the pre-processing phase, the train set is firstly
sorted by fact triples ⟨eh, r, et⟩, and then the sentences with the
same fact form a sentence-bag. While the test set is sorted by
entity pairs ⟨eh, et⟩ firstly, and then a sentence-bag consists of all
sentences with the same pair. The detailed statistics of NYT are
as follows (‘‘#’’ indicates the number of items): #sentence and
#entity_pair of train set are 570088 and 293162, respectively,
while for the test set, the values are 172448 and 96678.

Besides, We exploit the held-out evaluation to evaluate our
model. The evaluation metrics are divided into two categories,
one is the standard metrics including precision–recall (PR) curves,
the area under curve (AUC), Top-N precision (P@N) and Max_F1,
the other is long-tail metrics (i.e., accuracy of Hits@K). The de-
tailed definitions are as follows:

• The precision–recall(PR) curve is a curve plotted with re-
call values as x axis and precision values as y axis, and
shows the tradeoff between precision and recall for different
thresholds. The formula is as follows,

precision =
True_Positive

True_Positive + False_Positive
, (21)

recall =
True_Positive

True_Positive + False_Negative
. (22)

• AUC denotes the area under the precision–recall curve. The
higher the AUC value, the better the performance.

• Top-N precision indicates precision values for the entity
pairs with top-n prediction confidences.

• Max_F1 means the maximum value of F1 score. The F1 score
is the weighted average of precision and recall.

F1 =
2 ∗ precision ∗ recall
precision + recall

(23)

• Hits@K is used to measure whether a test sentence bag
whose gold relation label r (k) falls into top-K relations ranked
by their prediction confidences.

.1. Experimental settings

Following previous works, for initialization, we use the same
re-trained word embeddings released by Lin et al. [7]4. During
raining, we leverage mini-batch SGD [48] with the learning
ate γ to minimize the objective functions. Besides, to prevent
overfitting, we employ the dropout strategy [49] on the relation
classifier layer.

In addition, the parameters of Entity-Aware Embedding layer,
PCNN layer and Base Branch Network are kept consistent with
[15]. So do the learning rate and dropout rate. For Hierarchy
Structure Encoder and training objectives, we just use the fol-
lowing setting, and make little effort to select the best hyper-
parameters. We have reason to believe that our model can

2 http://iesl.cs.umass.edu/riedel/ecml/.
3 https://github.com/thunlp/HNRE/tree/master/raw_data.
4 https://github.com/thunlp/OpenNRE.

http://iesl.cs.umass.edu/riedel/ecml/
https://github.com/thunlp/HNRE/tree/master/raw_data
https://github.com/thunlp/OpenNRE


T. Peng, R. Han, H. Cui et al. Knowledge-Based Systems 235 (2022) 107637

T
M

6
t
n

able 1
odel evaluation on NYT. In the model comparison, best score is in bold. While values exceeding GHE-LPC are underlined in the ablation study.
Approach P@100 P@200 P@300 P@500 P@1000 P@2000 Mean AUC Max_F1

Model comparison

PCNN-ATT‡ 78.0 72.5 71.0 67.6 54.3 40.8 64.0 0.39 0.437
PCNN-HATT† 82.0 80.5 76.0 67.8 58.3 42.1 67.8 0.42 0.455
ToHRE‡ 91.5 82.9 79.6 74.8 63.3 48.9 73.5 0.44 0.476
CoRA† 93.0 91.0 88.0 81.2 67.6 51.4 78.7 0.530 0.525

GHE-LPC 94.0 94.0 91.7 85.4 69.9 54.0 81.5 0.561 0.549
Ablation study

∼ w/o GHE (LPC) 94.0 90.5 87.0 81.4 71.8 52.1 79.5 0.541 0.532
∼ w/o LPC (GHE) 92.5 90.0 88.0 82.2 71.6 52.7 79.5 0.546 0.538
∼ w/o Dot Product in Eq. (11) 95.0 91.5 90.0 83.8 71.6 52.9 80.8 0.551 0.538
∼ w/o Gating in Eqs. (12)– (13) 93.0 93.0 89.0 84.8 70.3 52.6 80.5 0.549 0.536
∼ w/o Attention Pooling in Eq. (15) 92.0 89.0 87.7 79.2 69.6 53.3 78.5 0.541 0.542
∼ w/o Auxiliary Loss in Eq. (19) 83.0 80.5 77.0 69.6 61.2 46.8 69.7 0.445 0.478
Table 2
Model evaluation on NYT when randomly keeping one/two/all sentence(s) in each bag. In the model comparison, best score is in bold. While values exceeding
GHE-LPC are underlined in the ablation study.
P@N (%) One Two All

100 200 300 Mean 100 200 300 Mean 100 200 300 Mean

Model comparison

PCNN-ATT‡ 73.3 69.2 60.8 67.8 77.2 71.6 66.1 71.6 76.2 73.1 67.4 72.2
PCNN-HATT† 84.0 76.0 69.7 76.6 85.0 76.0 72.7 77.9 88.0 79.5 75.3 80.9
ToHRE‡ 87.1 81.4 75.3 81.3 89.7 83.1 78.5 83.8 92.4 86.7 81.2 86.8
CoRA† 94.0 90.5 82.0 88.8 98.0 91.0 86.3 91.8 98.0 92.5 88.3 92.9

GHE-LPC 97.0 94.0 88.7 93.2 98.0 95.5 90.3 94.6 98.0 96.5 92.3 95.6
Ablation study

∼ w/o GHE (LPC) 93.0 90.0 86.3 89.8 95.0 92.0 89.0 92.0 95.0 93.5 91.3 93.3
∼ w/o LPC (GHE) 95.0 92.5 87.3 91.6 95.0 93.5 89.0 92.5 97.0 95.0 92.0 94.5
∼ w/o dot product in Eq. (11) 91.0 89.0 85.7 88.6 94.0 93.0 90.0 92.3 97.0 95.0 91.7 94.6
∼ w/o gating in Eqs. (12)–(13) 96.0 94.0 87.3 92.4 99.0 94.2 89.9 94.4 99.0 96.1 91.7 95.6
∼ w/o attention pooling in Eq. (15) 89.0 88.5 85.7 87.7 93.0 92.5 88.3 91.3 93.0 91.0 87.7 90.6
∼ w/o auxiliary loss in Eq. (19) 84.0 72.5 65.7 74.1 87.0 83.0 75.0 81.7 90.0 85.0 78.7 84.6
achieve greater performance improvement with better parameter
settings. In details, dw , dp, dx, dc , dg , d′

g , n and ω are 50, 5, 150, 230,
90, 690, 120 and 3 respectively. λ in Section 3.3 is 0.05. For GATs,
he number of heads H is set to 3. For NYT dataset, we set the
umber of relation levels k to 3. The numbers of distinct relations

at three levels are 9, 36 and 53. For optimization, the learning rate
γ is 0.1, batch size is 160, dropout rate is set to 0.5, weight decay
of L2 regularization η is 1e-5. Besides, the coefficients of the loss
function are set to 1, 1 and 1.

4.2. Baselines

We choose some competitive methods as the baseline models:

• PCNN-ATT: It is the most classical RE model proposed
by Lin et al. [7], which uses attention mechanism to alleviate
wrong labeling problem.

• PCNN-HATT: It is the first hierarchical RE model devised
by Han et al. [13], which leverages relation hierarchies and
design a hierarchical attention network.

• ToHRE: It is proposed by Yu et al. [16], which designs a Top-
Down classification strategy along the relation hierarchies.

• CoRA: It is the most competitive method currently pro-
posed by Li et al. [15], which designs a collaborating
relation-augmented attention network to handle long-tail
relations.

4.3. Overall results

The overall performance of different methods is shown in

Table 1, Table 2 and Fig. 3(a). Here † denotes that the results are
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Table 3
Hits@K (Macro) on the relations whose number of training instances
<100/200.
#Instance <100 <200

Hits@K 10 15 20 10 15 20

PCNN_ATT <5.0 7.4 40.7 17.2 24.2 51.5
PCNN_HATT 29.6 51.9 61.1 41.4 60.6 68.2
ToHRE 62.9 75.9 81.4 69.7 80.3 84.8
CoRA 66.7 72.2 87.0 72.7 77.3 89.3

GHE-LPC 72.2 83.3 88.9 77.3 86.4 90.9

from the corresponding official codes, while ‡ indicates that the
results are from our own implementation.

It can be observed that our model GHE-LPC achieves state-of-
the-art performance on multiple metrics. For AUC, our model’s
value is 0.561, which outperforms strong baselines by at least
0.031. And we improve the Max_F1 value by at least 2.4%. For
P@N metric, in Table 1, our GHE-LPC achieves the highest preci-
sion on all N values. While in Table 2, we randomly retain one,
two or all sentence(s) in each bag to keep the setting consistent
with Li et al. [15], and GHE-LPC gets the highest values in spite of
the randomness of retained sentences. In addition, The Precision–
Recall curve of our model is significantly higher than the other
models, although it has a small overlap with baselines when recall
values less than 0.10.

To verify the impact of GHE-LPC on long-tail relations, we
filter out the instances of long-tail relations from the test set and
conduct model comparison experiments. See Table 3 for detailed
results. The metric is Hits@K, which denotes whether a test sen-
tence bag whose gold label r (k) falls into top-K relations ranked
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Fig. 3. Precision–recall (PR) curves.
by prediction probability. Besides, macro average is applied to
calculate these values. Our GHE-LPC achieves the highest values
for all values of K . This shows that out GHE-LPC does place more
emphasis on long-tail relations and moves them forward in the
rankings.

4.4. Ablation study

To further evaluate the effectiveness of GHE and LPC, we
conduct some ablation experiments. Note that, the setup ∼ w/o
GHE (LPC) indicates that R(i) is initialized randomly and is not
processed by Hierarchy Structure Encoder. The setup ∼ w/o Dot
Product in Eq. (11) denotes the replacement of Eq. (11) by aver-
age pooling over R(i). The setup ∼ w/o Gating in Eqs. (12)–(13)
ndicates that feature stitching [u; c(i)] is processed directly by
Multi-Layer perceptron. The setup ∼ w/o Attention Pooling in
Eq. (15) denotes that the attention pooling is replaced by average
pooling.

The results are shown at the bottom of Tables 1 and 2, and
Fig. 3(b). It can be find that the performance drop is consistent
in multiple metrics, i.e., P@N, Max_F1 and AUC. (1) For our two
main contributions (i.e., GHE and LPC), the performance drop
is noticeable when either of them is removed, which proves
that they are effective and necessary. (2) In particular, when the
auxiliary loss Lhier is removed, the results are extremely low. This
also confirms the power/importance of sentence-level supervised
signals. (3) Furthermore, the other setups highlight the necessity
of each technique in Section 3.6.1.

4.5. Impact of ATT(·) function in Section 3.5.2

Since ATT (·) indicates any kind of attention function, to eval-
uate its impact, we implement it in the following ways:

• ATT (li, lj) = LeakyReLu(W T
att [Wli;Wlj] + batt ) : In this paper,

we use this implementation, where LeakyReLu(·) is the ac-
tivation function and Watt ∈ R2d′

g . For convenience, it is
denoted by Linear.

• ATT (li, lj) = CosineSimilarity(Wli,Wlj) : The cosine similarity
is used to calculate the distance between li and lj, denoted
by Cosine.

• ATT (li, lj) = Wli · Wlj : The dot product is used to calculate
the similarity between li and lj, denoted by Dot Product.

The results are shown in Table 4. It can be seen that Cosine
outperforms Dot Product in terms of multiple metrics, while
Linear achieves the best performance. The reason may be that
Linear can benefit more from the multi-head setting.
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4.6. Case study and visualization

The probabilities derived from Eq. (10) are critical to measure
the knowledge transfer between different relations. We select
two examples from NYT dataset and list the top-3 matching
probability values at all relation levels in Table 5. It can be seen
that our model has better identification of NA and has better
recognition of noisy sentences (i.e., Sent. 1).

As stated in Section 1, the correlation of relations is reflected in
two aspects, i.e., inter- and intra-level. Along the relation hierar-
chies, intuitively, inter-level correlation should be more obvious
than intra-level. To observe the correlation of relations, we cal-
culate the similarity between the resulting relation embeddings
by dot product, and visualize the intra- and inter-level similarity
matrices in Fig. 4. Note that we only consider relations that have
siblings because non-sibling relations may dilute the results. As
can be seen from the figures, the correlation of relations becomes
more and more obvious along the relation hierarchies, which also
demonstrates that our model does capture the correlation.

4.7. Error analysis and future research directions

To find the reasons of misclassification, we manually exam-
ine the misclassified samples in the test set and summarize
the following factors: (1) In most cases, the proposed method
still suffers greatly from the wrong labeling problem, proba-
bly because the attention mechanism still cannot completely
eliminate the effect of noisy supervised signals; (2) Some re-
lations have similar meanings and are difficult to distinguish,
which causes relation ambiguity problem. For example, relations
/people/deceased_person/place_of_death and /people/deceased_pers-
on/place_of_burial belong to this case. (3) Inconsistent distribution
of relations on the train and test sets. Some relations appear only
in the test set while there are no training instances in the train
set. Our model and existing baselines are not suitable for this
zero-shot scenario.

The correlation of relations in this paper is essentially the
correlation between labels in the classification tasks. Since mod-
eling the correlation of labels can intuitively improve the dis-
crimination between categories, our ideas are applicable to all
classification tasks. Since our proposed approach addresses the
hierarchical classification task, future research directions include
at least the following two aspects: (1) Designing methods to
model correlations between labels for more general classification
tasks; (2) Our approach in this paper can be applied to any clas-
sification task with taxonomic hierarchies, such as fine-grained
hierarchical text/image classification, etc.
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ATT (·) P@100 P@200 P@300 P@500 P@1000 P@2000 Mean AUC Max_F1

Linear 94.0 94.0 91.7 85.4 69.9 54.0 81.5 0.561 0.549
Cosine 94.0 89.0 86.0 82.6 69.2 53.8 79.1 0.557 0.551
Dot product 91.0 88.0 85.7 79.6 71.6 52.7 78.1 0.550 0.541
Table 5
The Top-3 matching probability values at all relation levels for two examples of NYT.
Sent. 1: The cat-and-mouse game of the news media is something Mr. Langella has had a chance to study recently, for

his film roles as William S. Paley, the chief executive of CBS, in ‘‘Good Night, Good Luck" and, for that matter,
Perry White, the editor of a major metropolitan newspaper, in ‘‘Superman Returns".

α(1) α(2) α(3)

NA: 0.679 NA: 0.677 NA: 0.676
GHE-LPC /business: 0.236 /business/company: 0.209 /business/company/founders: 0.129

/people: 0.019 /business/person: 0.015 /business/company/major_shareholders: 0.051

Sent. 2: Now, in the Internet and cellphone era, that name seems out of date as well, so the museum is renaming
itself again, this time as the Paley Center for media, after the late CBS founder William S. Paley.

α(1) α(2) α(3)

/business: 0.755 /business/company: 0.619 /business/company/founders: 0.449
GHE-LPC NA: 0.160 NA: 0.168 NA: 0.167

/location: 0.024 /business/person: 0.085 /business/company/major_shareholders: 0.127
Fig. 4. Visualization of the correlation of relations on NYT. Note that, (a), (b) and (c) show the intra-level correlations, where the relations without siblings are
removed. (d) and (e) show the inter-level correlations, which are more obvious than intra-level ones.
J.
5. Conclusions

In this paper, we introduce the correlation of relations to
he DSRE task and model it from two perspectives. Globally, we
tilize Hierarchy Structure Encoder to aggregate relation informa-
ion on the relation hierarchies graph and obtain Global Hierarchy
mbeddings. Locally, a novel constraint called Local Probability
onstraints is proposed, which captures the similarity of classi-
ication probabilities of adjacent relation levels. Compared with
he competitive baselines, our proposed method achieves state-
f-the-art performance using the NYT dataset, which demon-
trates the importance of correlation between relations. In addi-
ion, there is still room for improvement, especially for long-tail
roblem. In the future, we plan to utilize more sophisticated
trategies to further handle long-tail relations.
8
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