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Abstract
Aspect-Opinion Pair Extraction (AOPE) task aims to capture each aspect with its corresponding opinions in user reviews.
Entity recognition and relation detection are two fundamental subtasks of AOPE. Although recent works take interaction
into account, the two subtasks are still relatively independent during calculation. Furthermore, since AOPE task has not
been formally proposed for a long time, syntactic information does not attract much attention in the current deep learning
models for AOPE. In this paper, we propose a model for Synchronously Tracking Entities andRelations (STER) to deal with
AOPE. Specifically, we design a network consisting of a bank of gated RNNs, where we can track all entities of a review
sentence in parallel. STER utilizes three features, i.e., context, syntax and relation, to learn the representation of each tracked
entity and calculate the correlated degree between all entities synchronously at each time step. The entity representation and
the correlated degree are highly dependent during calculation. Finally, they will be used for entity recognition and relation
detection, respectively. Therefore, in STER, the two subtasks of AOPE can achieve sufficient interaction, which enhances
their mutual heuristic effect heavily. To verify the effectiveness and adaptiveness of our model, we conduct experiments on
two annotation versions of SemEval datasets. The results demonstrate that STER not only achieves advanced performances
but adapts to different annotation strategies well.

Keywords Sentiment analysis · Entity recognition · Relation detection · Syntax

1 Introduction

Review resources on the web can reflect the quality of a
product or service based on the sentiment polarity of review-
ers, and researches on sentiment analysis of these reviews
have high application values for business and society as a
whole [1–4]. However, the sentiment contained in a review
can be mixed. For example, in the review “This laptop is
good in performance but poor in appearance,” we can-
not easily judge the sentiment polarity at the sentence level
because the reviewer has different opinions for different
aspects. Aspect Based Sentiment Analysis (ABSA) is a
fine-grained sentiment analysis task, which analyzes user’s
sentiment tendencies towards various aspects of a product
or service in a review. Aspect extraction [5] and sentiment
polarity classification for the extracted aspects [6] are two
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primary subtasks of ABSA. Aspect extraction is a unique
and essential task for ABSA compared to document-level
and sentence-level sentiment analyses, and numerous schol-
ars have proposed a variety of approaches to solve this task
[7–10]. In addition, to support both subtasks of ABSA and
to make users capture the advantages and disadvantages of
various aspects in a short time, scholars have also researched
the opinion extraction task [11–13]. Later, based on the cor-
relations of aspects and opinions, numerous models have
been presented for their co-extraction. Some researchers
exploit multi-task learning frameworks to co-extract aspects
and opinions in a joint rather than pipeline manner to avoid
error propagation and improve co-extraction performances
[14–17]. Although their works have considered the relations
between aspects and opinions, most of their methods used
for relation detection are relatively simple and have trouble
detecting complex correlations. Furthermore, they usually
ignore the interaction between relation detection and entity
recognition, which restricts the mutual heuristic effect. For
example, an entity identified as an aspect or opinion term
is more likely to correlate with other entities; correspond-
ingly, an entity with a higher correlated degree with others
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is more likely to be an aspect or opinion term, whereas most
co-extraction studies only consider the latter.

Additionally, these co-extraction studies do not extract
aspects and opinions in pairs. As the instance shown in
Fig. 1, co-extraction only recognizes the role of entities,
while pair-wise extraction intuitively reflects the sentiment
for each aspect. Hence Aspect-Opinion Pair Extraction
(AOPE) has been proposed recently [18–20]. For AOPE,
entity recognition and relation detection are two fundamen-
tal subtasks. The relation detection unit, which interacts
with the entity recognition unit, can match more rela-
tions between aspects and opinions, such as one-to-many
and many-to-one. Correspondingly, the performance of the
entity recognition unit can also be improved with these rela-
tions. Nevertheless, during our study, we found that the
sufficiency of interaction in most AOPE models still has
room for improvement, where the two subtasks remain rel-
atively independent during calculation and the number of
interactions is few. Furthermore, since AOPE task has not
been formally proposed for a long time, syntactic informa-
tion does not attract the attention of many scholars in the
current deep learning models for AOPE. The roles and rela-
tions of aspects and opinions usually appear regularity in
syntax, which can provide more clues for both subtasks of
AOPE. Some AOPE models that take syntactic informa-
tion into account still rely on external information, such
as syntactic dependency trees and labels, and they require
expensive effort for parsing and highly depend on the pars-
ing performances [21, 22]. More importantly, there are
many web reviews with non-standard grammar. In this case,
the performance of the model relying on external knowl-
edge is likely to be limited. To sum up, AOPE is still an
under-investigated task.

In this paper, we propose an end-to-end joint learning
model for Synchronously Tracking Entities and Relations
(STER) to deal with AOPE in a syntax-aware parallel archi-
tecture. First, based on the excellent performance of Bidi-
rectional Encoder Representations from Transformers (BERT)
[23] in representation learning, we adopts it to learn the
initial representation of each token in a review sentence.
Then, we design a neural network consisting of a bank of

Fig. 1 An example of the comparison between co-extraction and
pair-wise extraction

gated RNNs, with which we can track all tokens in paral-
lel, synchronously update the representations of all tracked
tokens and calculate the correlated degree between the
tracked and input tokens utilizing three features of context,
syntax and relation at each time step. We use the dimen-
sional hierarchy of vectors to store syntactic information in
sentences without any external resources. All the learned
information comes from the review sentences. More impor-
tantly, the token representation and the correlated degree are
highly dependent during calculation. In the end, we feed
the final token representations into Conditional Random
Field (CRF) [24] for entity labeling and use the correlated
degree for relation classification. Thereupon, the two sub-
tasks of AOPE can achieve sufficient interaction in STER.
To verify the effectiveness and adaptiveness of STER, we
conduct a serial of experiments on the datasets based on
SemEval benchmarks with two different annotation ver-
sions. The results show that STER achieves good results on
both annotation versions.

In summary, the main contributions of our work are
concluded as follows:

1. We propose an end-to-end joint learning model, STER.
By designing the parallel architecture, STER can track
entities and relations synchronously and exploit rich
information, including context, syntax and relation,
to assist in both subtasks of AOPE. All the learned
information comes from the review sentences without
external resources.

2. In STER, entity recognition and relation detection can
achieve sufficient interaction with the high dependence
of calculation, which heavily enhances their mutual
heuristic effect.

3. The framework of STER provides a general solution
for AOPE and AOPE-like tasks, i.e., updating the entity
representation and calculating the correlated degree
of two entities simultaneously on each unit of an
N × N grid. The algorithms inside the grid are easily
modified and replaced, so STER has strong flexibility
and scalability.

4. We conduct experiments on two annotation versions
of datasets based on SemEval benchmarks. The results
verify that our model achieves advanced performances
and adapts to different annotation strategies well.

2 Related work

Early works on aspect and opinion extraction tasks are rule-
based. Hu and Liu [25] considered frequent nouns or noun
phrases in the review text as opinion targets based on asso-
ciation rules,while judgingwhether infrequent nounsor noun
phraseswere opinion targets basedon their distances from the
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opinion words. Popescu and Etzioni [26] used Point-
wise Mutual Information (PMI) to filter these infrequent
nouns or noun phrases, so as to retain the true opinion
targets. Zhuang et al. [27] focused on the depen-
dency relation and developed the dependency template
based on the high frequency of dependencies between
opinion targets and opinion words for the extraction
tasks of movie reviews. Qiu et al. [28] used a domain corpus
to find domain-related opinion words, and the noun opinion
targets could be extracted with the extracted opinion words
and the syntactic dependency trees. The performances of
these models rely heavily on the used rules and easily suffer
from limitations because the patterns not in the rules cannot
be detected. Traditional machine learning methods usually
treat the extraction tasks as a sequence labeling problem.
Among various sequence labeling models, CRF is widely
used due to its powerful performance. Jakob and Gurevych
[29] first used CRF in the opinion target extraction task and
exploited several features, including token, part-of-speech
(POS), short dependency path, word distance, and opinion
sentence. In addition to the features of linear chain struc-
ture, Li et al. [30] also considered the conjunction structure
and the syntactic tree structure, i.e., the linguistic structure,
as the features for CRF to extract both opinion targets
and opinion words. However, these CRF-based extrac-
tion models generally depend on hand-crafted features
that are used in linear combinations rather than high-level
interactions.

To automatically capture and more effectively combine
features, neural networks have been applied to many aspect
and opinion extraction studies. Poria et al. [31] were the first
to present a deep learning method for the aspect extraction
task and exploited a 7-layer deep convolutional neural
network to capture features for each word in a sentence.
In addition, based on the effectiveness of the syntactic
structure for the opinion target extraction task, many
scholars have used neural network to extract dependency
features from dependency trees. Luo et al. [9] further
considered the propagation direction of the dependency
structure and proposed a bidirectional dependency tree
network to obtain two representations from the bottom-up
and top-down propagation on a dependency tree. Finally,
they combined both tree-structured and sequential features
to deal with the aspect extraction task. Fan et al. [11]
designed a target-fused sequence labeling neural network
to perform the opinion extraction task. Specifically, in their
network, the target information is transferred to the left and
right contexts in opposite directions with two LSTMs. Then
the left and right contexts are combined with the global
context which obtained through a bidirectional LSTM to
gain the representation of each word, and finally the
sequence labeling is performed. In addition to saving time
in constructing numerous manual features, the extraction

performances of these networks are generally better than
those CRF-based models performed with hand-crafted
features. However, the above researches just studied one
of the extraction tasks or ignored the interaction between
the two extraction tasks. To complete the whole ABSA
task, scholars need to extract aspects firstly, then detect
opinions for each extracted aspect, and finally, judge the
sentiment polarity for each aspect according to its opinions.
Obviously, this pipeline method would suffer from error
propagation.

Afterwards, joint learning methods for co-extraction
are proposed. Scholars have presented various methods to
detect the relations between aspects and opinions, which
also assists in recognizing the roles of entities. Apart from
the label system for entity recognition, Katiyar et al. [14]
also built a label system for relation detection based on the
distance between entities to jointly extract the relations. In
the two works of Wang et al. [32, 33], they respectively
exploited RNN and attention mechanism for encoding
the aspect-opinion relations in high-level representation
learning based on the dependency parse tree. Yu et al.
[16] designed a multi-task learning framework to implicitly
capture the aspect-opinion relations and proposed a global
inference method to explicitly model syntactic constraints
among the two extraction tasks. Due to the limitation of
the dependency path template, Dai and Song [17] proposed
automatic mining rules of dependency relation, which could
capture relations more flexibly. However, though these
works exploit the relations between aspects and opinions
to perform co-extraction, they are still limited. First,
some methods for relation detection only depend on the
distance or syntax, which cannot ensure their adaptability
to different corpora or annotation strategies, especially
for some online reviews whose language structures lack
standardization. Second, these studies generally utilize
relation detection to assist in entity recognition but
ignore the interaction between them, which limits the two
processes to be mutually beneficial [34]. Third, compared
with co-extraction, pair-wise extraction is more conducive
to ABSA and its downstream tasks. Therefore, AOPE task is
proposed.

AOPE is also available in both pipeline and joint
learning methods, and the difference is whether rela-
tion detection is performed after or simultaneously with
entity recognition. For avoiding error propagation, the
latter is adopted by the majority. Chen et al. [18]
set up the units of entity recognition and relation
detection as two channels. To achieve interaction, they
built a synchronization unit to influence updating the
input of the next execution for both channels. Their exper-
imental results demonstrate the effectiveness of interaction
between the two processes. However, in terms of struc-
ture, the connection between the two channels is not close
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enough, and the number of interactions is few. Zhao et al.
[19] combined tokens as spans in different lengths by
enumeration and designed two encoders to learn the rep-
resentation of each span. Finally, all candidate spans were
used to perform entity recognition and relation detection
simultaneously. In this model, the connection between the
two subtasks of AOPE is only sharing the span represen-
tations. Although these scholars have taken the interaction
into account, the entity recognition and relation detection
subtasks are still relatively independent during calcula-
tion in their works. Gao et al. [35] took an alternative
approach to deal with AOPE. First, they extracted the
aspects based on a span-wise scheme and constructed the
questions about the extracted aspects. Then, they treated
the corresponding opinion term extraction task as the read-
ing comprehension task. Finally, they combined the two
processes for joint learning and obtained good results. How-
ever, none of the above three studies consider syntactic
information, which has been frequently needed in previ-
ous aspect and opinion extraction studies and can provide
more clues for both subtasks of AOPE. In the two works
of Wu et al. [21, 22], they exploited GCN to model the
dependency edges and labels for better span boundary and
relation detections. They have also achieved good results on
AOPE, but like most ABSA models that utilize syntactic
parsing information, their two models crucially depend on
the grammatical accuracy of the review sentences and the
performance of the parsing algorithm. In this paper, we fur-
ther explore AOPE task and propose an end-to-end model,
STER, which can achieve sufficient interaction of sub-
tasks and learn syntactic information without the external
resources.

3Model

3.1 Task description

Given a token sequence S = {s1, s2, ..., sN } of a review
sentence, AOPE aims to extract the set of aspect-opinion
pairs AOP = {(ak, ol), ...}, where ak and ol consisting
of one or more tokens from S represent an aspect
term and its corresponding opinion term, respectively. As
mentioned above, AOPE is generally divided into entity
recognition and relation detection subtasks. Specifically,
entity recognition is responsible for assigning a label yE

i

to each token si , and yE
i ∈ {B − A, I − A, B − P, I −

P, O} where B/I means that the token is the start/inside
of an aspect (A) or opinion (P ) term while O denotes that
the token does not belong to any aspect or opinion term.
Relation detection is responsible for assigning a label yR

m,n

to each token pair (sm, sn), and yR
m,n ∈ {1, 0} where 1

indicates that there is a pair-wise relation between sm and sn
while 0 is opposite.

3.2 Framework

To deal with the above tasks, we design a model for
Synchronously Tracking Entities and Relations (STER).
The framework of STER is shown in Fig. 2. We utilize
BERT to encode the input sentence for learning the initial
context representation of each token. In order to make entity
recognition and relation detection interact, we construct a
tracking network through which both subtasks can perform
synchronously. This network contains multiple memory
cells in parallel to track all tokens in a review, and the

Fig. 2 The framework of STER. We unfold all time steps of each memory cell, and the calculation unit marked with the letter A is internal of a
cell, whose details are shown in Fig. 3
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input sequence of time steps is also the token sequence.
The detailed illustration of a memory cell is provided in
Fig. 3. With the help of gates in the cell, all tracked tokens
dynamically update their state based on the associated
context, syntax and relation as progressing through the
input sequence. Moreover, at each time step, according
to the representations of tracked token and input token,
the network will utilize a relation gate to calculate the
probability of two tokens belonging to an aspect-opinion
pair, i.e., correlated degree. In a word, the correlated
degree influences updating the tracked token representation
and is influenced by the token representation at previous
time step in turn. Finally, token representations at the
last time step and correlated degree at all time steps will
be respectively used for sequence labeling with CRF and
relation classification. In conclusion, the two subtasks of
AOPE can achieve continuous interaction based on the high
calculational dependence during the whole entity tracking
process. Additionally, this framework can also provide
a general solution for AOPE and AOPE-like tasks. The
algorithms inside the cell are easily modified and replaced
according to the needs of users.

3.3 BERT encoder

Due to the powerful performance of BERT, we adopt it as
the encoder to learn the initial representation of each token
incorporating contextual information. An input vector ei of
BERT is the sum of three embedding features containing
token embedding et

i , position embedding e
p
i and segment

embedding es
i :

ei = et
i + e

p
i + es

i (1)

Token embedding is obtained by tokenizing with Word-
Piece, i.e., dividing a word into a limited set of public sub-
word units, such as splitting ‘learning’ into ‘learn’ and ‘ing’,

which can compromise word validity and character flexibil-
ity. Then we respectively add two special symbols [CLS]
and [SEP] at the start and the end to obtain the complete
token sequence S. And then, the token embedding generates
by converting each token si to its corresponding id. Posi-
tion embedding refers to encoding the position information
of a token into a feature vector, and segment embedding is
used to distinguish different sentences within a paragraph.
In the end, the vector sequence E = {e1, e2, ..., eN } will
be fed into a pre-trained BERT model that leverages Trans-
former as its main framework. Transformer can capture the
bidirectional relation in a sentence and learn rich contextual
information. Finally, we can obtain the following context
representation of each token:

xi = BERT(ei) (2)

The sentence sequence X = {x1, x2, ..., xi, ..., xN } will be
used to perform the subsequent tasks.

3.4 Tracking network

In this section, we will introduce the tracking network
of STER in terms of the parallel architecture, the update
strategy of cell state, and network comparison.

3.4.1 Parallel architecture

To deal with AOPE task, we expect to learn token represen-
tations combined with rich information for entity recogni-
tion and build anN×N correlation matrix holding the prob-
ability of each token pair belonging to an aspect-opinion
pair for relation detection. Additionally, it is essential to
enhance the mutual heuristic effect between the two sub-
tasks by interacting. Inspired by Recurrent Entity Network
(EntNet) [36], we design a neural network of parallel archi-
tecture synchronously tracking entities and relations. The

Fig. 3 Illustration of ith

memory cell at time step t . The
four gates in red font are the
final forget, input, output, and
relation gates. The calculation of
our relation gate is circled with
an orange box. ⊗, ⊕, and �
correspond to ◦, + and − in the
equations, respectively
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original intention of EntNet is tracking the state evolution
of specific entities with the story flowing and dealing with
question-answering tasks during reading comprehension.
When reading a new story fragment, EntNet will calculate
the matching degree between the tracked entities and new
information, then take it as a gating value to update the
state of tracked entities. Thereupon, we associate that if we
change the new data from sentence level to token level as
Liu et al. [37] do, set the same number of tracked entities as
the tokens in a review, and modify the calculation method
of matching degree for relation detection, the variant net-
work can calculate the probabilities of all entity pairs being
aspect-opinion pairs, based on which the representations of
tracked entities are updated. Consequently, we construct a
network consisting of a bank of gated RNNs and set all
tokens of a review as the tracked targets. The input sequence
of the network is also set as the token sequence. The network
can update the token representation and calculate the cor-
related degree synchronously at each time step. Moreover,
by designing the update algorithm of cell state, the token
representation and the correlated degree are highly depen-
dent during calculation, which takes the interaction of both
AOPE subtasks into account.

3.4.2 Cell state update

The cell state update algorithm of a EntNet variant proposed
by [37] is shown as follows:

ĥi,t = ReLU(Whxt + Uhhi,t−1 + Vhki) (3)

d̄i,t = GRU(ĥi,t , d̄i,t−1) (4)

gi,t = σ(xt · hi,t−1 + xt · ki + wd̄ · d̄i,t ) (5)

hi,t = hi,t−1 + gi,t � ĥi,t (6)

hi,t = hi,t

‖hi,t‖ (7)

where ĥi,t and hi,t ∈ R
de×1 are the candidate hidden state

and new hidden state of ith tracked entity ki ∈ R
de×1 at

time step t , respectively. de is the dimension of all vectors
in the setting of this EntNet variant. xt ∈ R

de×1 is the input
of time step t . d̄i,t ∈ R

de×1 is the delayed memory designed
for a longer term of memory. gi,t is the update gate, i.e.,
the matching degree between the tracked entity ki and the
current input xt . The · symbol is the vector dot product,
therefore gi,t is a value.� is the Hadamard product.Wh,Uh,
Vh ∈ R

de×de , and wd̄ ∈ R
de×1 are trainable weight matrices

and vector shared by all memory cells at each time step.
However, due to the characteristics of AOPE, the update
strategy of cell state in STER is different from EntNet.

Syntactic information can provide clues for AOPE. We
can exploit the hierarchical level of an entity and the depen-
dency relation between entities to assist in both subtasks
of AOPE. In previous works, syntactic information is often

introduced with external dependency path templates or syn-
tactic parsers, which causes a limitation. In 2019, Shen
et al. [38] proposed Ordered Neurons LSTM (ON-LSTM),
integrating the hierarchy of syntactic structure into LSTM.
More importantly, both EntNet and ON-LSTM are RNN
structures, which makes it possible to integrate their update
algorithm of cell state. In addition, we can obtain long-term
memory without a separate unit of delayed memory due to
the characteristics of LSTM. The cell state update algorithm
of ON-LSTM is shown as follows:

ft = σ(Wf xt + Uf ht−1 + bf ) (8)

it = σ(Wixt + Uiht−1 + bi) (9)

ot = σ(Woxt + Uoht−1 + bo) (10)

ĉt = tanh(Wcxt + Ucht−1 + bc) (11)

f̃t = cummax(W
f̃
xt + U

f̃
ht−1 + b

f̃
) (12)

ĩt = 1 − cummax(W
ĩ
xt + U

ĩ
ht−1 + b

ĩ
) (13)

ωt = f̃t ◦ ĩt (14)

f̂t = ft ◦ ωt + (f̃t − ωt) (15)

ît = it ◦ ωt + (ĩt − ωt) (16)

ct = f̂t ◦ ct−1 + ît ◦ ĉt (17)

ht = ot ◦ tanh(ct ) (18)

where ft , it , and ot ∈ R
dh×1, are the fundamental forget,

input and output gates, respectively. dh is the dimension
of hidden state. ĉt and ht ∈ R

dh×1 are the candidate
cell state and the hidden state at time step t , respectively.
Their equations are the same as the standard LSTM. W ∈
R

dh×di , U ∈ R
dh×dh and b ∈ R

dh×1 are the weight
matrices and bias for gates. di is the dimension of the
input vector xt . ON-LSTM reflects hierarchical information
into the vector of cell state. It divides the dimensions of
a representation vector into intervals. Moreover, different
intervals represent different syntactic levels with varying
strategies of update. Specifically, ON-LSTM sets f̃t and
ĩt ∈ R

dh×1 to respectively split the intervals of high level
and low level in the cell state with activation function
cummax(...) = cumsum(softmax(...)). ωt ∈ R

dh×1 denotes
their overlapping interval. The ◦ symbol also represents
the Hadamard product. According to the characteristics of
syntax, for high hierarchy, the corresponding dimension
interval should keep historical information for a long time,
while for low hierarchy, it should update with a high
frequency. As for their overlapping interval, both forgetting
and updating information are needed, so ON-LSTM updates
this interval as the standard LSTM does. In the end, we
can get the final forget gate f̂t and the final input gate ît
to calculate the cell state ct and the hidden state ht at time
step t .

A marked difference between EntNet and ON-LSTM is
that EntNet updates the cell state aiming at a certain entity,
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while ON-LSTM updates aiming at the entire sentence.
EntNet learns information related to the tracked entity, and
its equations all involve the tracked entity ki . Thereupon,
in order to inherit the parallel architecture of EntNet, we
perform entity extension to ON-LSTM by involving the
representation of tracked token xi in the calculations of
various gates and the candidate cell state as follows:

(19)

(20)

(21)

(22)

(23)

(24)

where xi is the same role as ki in EntNet and 1 ≤ i ≤ N ,
which denotes that we set N parallel tracking chains.1 xt is
the current input token and 1 ≤ t ≤ N , which means the
number of time steps is also N . W ∈ R

dh×di , U ∈ R
dh×dh ,

V ∈ R
dh×di and b ∈ R

dh×1 are the weight matrices and bias
for gates, where dh and di are the dimension of hidden state
and input token, respectively. Additionally, we add a bar on
the top of original input gate symbol to avoid confusion of
symbols.

Naturally, the equations of the final forget and input gates
change accordingly:

ωi,t = f̃i,t ◦ ĩi,t (25)

f̂i,t = fi,t ◦ ωi,t + (f̃i,t − ωi,t ) (26)

îi,t = īi,t ◦ ωi,t + (ĩi,t − ωi,t ) (27)

With the above gates, our tracking network can learn the
contextual and syntactic information related to each tracked
token when performing cell state update.

For relation detection, we design a relation gate whose
value is the correlated degree between the tracked token
and the input token. Its function is similar to gi,t , which
denotes the matching degree in EntNet. However, (5) is not
suitable for calculating the correlated degree in AOPE. The
similarity obtained by dot product indicates the distance in
vector space where an aspect and its opinion are generally
not close. Motivated by [18], we use the following equations
to calculate the correlated degree:

ut = tanh(Wuxt ) (28)

γ (ut , hi,t−1) = W 1
r tanh(W

2
r ut + W 3

r hi,t−1) (29)

where hi,t−1 can be seen as the latest representation of the
tracked token xi . In order to map xt and hi,t−1 to the same
vector space, we perform a linear transformation on xt ,
where Wu ∈ R

dh×di is the transformation matrix. Referring

1In our datasets, the length of a review sentence does not exceed 100
tokens. As for longer sentences, slicing should be adopted.

to the calculation of the hidden state, i.e. (18), we also adopt
tanh function to activate xt . Then, we can get ut and feed
it with hi,t−1 into the scoring function γ to calculate their
correlated degree. The matrices W 2

r , W 3
r ∈ R

dh×dh , and
W 1

r ∈ R
1×dh are trainable parameters.

With the softmax function, we can obtain the probability
distribution of correlated degree between current input
token and all tracked tokens:

ri,t = exp(γ (ut , hi,t−1))
∑N

j=1 exp(γ (ut , hj,t−1))
(30)

We also set ri,t as the relation gate and update the new
cell state as follows:

zt = tanh(Wzxt ) (31)

ci,t = f̂i,t ◦ ci,t−1+ îi,t ◦ ĉi,t + ri,t ◦ zt (32)

where ri,t ◦ zt indicates the relational information between
xi an xt . Consistent with (28), we also perform a linear
transformation and a tanh activation on xt , where Wz ∈
R

dh×di . To sum up, during update, forget gate f̂i,t and
input gate îi,t are responsible for learning contextual and
syntactic information, while relation gate ri,t is responsible
for learning relational information.

In the end, we can obtain the new hidden state of ith

tracked token xi at time step t as follows:

hi,t = oi,t ◦ tanh(ci,t ) (33)

According to (30), (32) and (33), it can be observed that
the hidden state and the relation gate are highly dependent
during calculation. Moreover, cell state2 at the last time
step and correlated degree at all time steps will be used for
sequence labelling and relation classification, respectively.
Thereupon, entity recognition and relation detection can
achieve sufficient interaction in STER.

3.4.3 Network comparison

Although we design the above tracking network inspired by
EntNet and ON-LSTM, there are still many differences.

Compare with EntNet The idea of tracking entities comes
from EntNet, but the structure of our network is not identical
to it. First, the number of tracked entities is no more than 20
in EntNet but is no more than 100 in our network. We switch
the input of each time step from sentence level to token level
as Liu et al. [37] do, and the calculational complexity at each
time step would decreases. Correspondingly, the number
of parallel cells is able to increase. In addition, while the
granularity of input becomes smaller, the term of memory
in the network should be longer, and Liu et al. [37] set
a delayed memory unit in their EntNet variants. However,

2We take cell states instead of hidden states as the final token
representations, which can obtain better results.
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in our network, due to the characteristics of LSTM, we
can obtain long-term memory without setting up a separate
delayed memory unit. More importantly, apart from parallel
architecture, our update strategy of cell state, which aims at
AOPE task, is entirely different from EntNet.

Compare with ON-LSTM Our cell state update strategy is
designed with reference to ON-LSTM but is more targeted.
Specifically, ON-LSTM learns information based on the
whole sentence, while our network learns information based
on the tracked token. Moreover, compared with ON-LSTM,
our network also learns relational information in addition
to contextual and syntactic information. Apart from gates
in ON-LSTM, we design a relation gate to calculate the
correlated degree between the tracked and input tokens.
With this gate, we can detect pair-wise relations and exploit
such relations to update the representations of all tracked
tokens.

3.5 Objective

After passing sequence X through the tracking network,
we can obtain the final token representation sequence C =
{c1,N , c2,N , ..., cN,N } and the correlation matrix R ∈R

N×N

whose element is ri,t . Then we respectively perform sequence
labelling and relation classification with them.

Entity Recognition Compared with classifiers, CRF consid-
ers the correlation with adjacent labels and searches the
optimal global solution by calculating the joint probability
distribution of the entire sequence, which avoids labelling
bias. Hence, we take CRF as our sequence labelling model
for entity recognition. Formally, CRF calculates the proba-
bility of a label sequence yE ={yE

1 , yE
2 , ..., yE

N } as follows:

P(yE |C) = exp(α(C, yE))
∑

yE′ ∈YE exp(α(C, yE′
))

(34)

where YE is the set of all possible label sequences forC, and
α is the composite score function involving the state score
matrix S̃ and the transition score matrix T̃ as follows:

α(C, yE) =
N∑

i=1

(S̃i,yE
i

+ T̃yE
i−1,y

E
i
) (35)

S̃i = Ws̃ci,N + bs̃ (36)

where S̃i,yE
i
denotes the score of ci,N labeled as yE

i based on

its own feature, and T̃yE
i−1,y

E
i
measures the transition score

from yE
i−1 to yE

i . The matrices Ws̃ ∈ R
5×dh and bs̃ ∈ R

5×1

are used to create the mapping between ci,N and five labels.
Naturally, S̃i,yE

i
is extracted from S̃i . In the end, we take the

following negative log-likelihood function as the loss of this
subtask:

L(E) = −logP(yE∗|C) (37)

where yE∗ is the gold label sequence of C.

Relation Detection Formally, relation detection can be seen
as a binary classification task identifying a token pair as
related or unrelated. With the correlation matrix R, we can
obtain the predicted relation distribution p(yR

m,n|(sm, sn))

of each token pair. The loss of this subtask is generated
by calculating the cross-entropy between R and the gold
relation matrix G ∈ R

N×N as follows:

L(R) = −
N∑

m=1

N∑

n=1

p(yR∗
m,n|(sm, sn))log(p(yR

m,n|(sm, sn)))

(38)

where p(yR∗
m,n|(sm, sn)) denotes the gold relation distribution.

Training Objective Finally, by combining the loss of both
subtasks, we can get the final training objective of STER:

L(θ) = λEL(E) + λRL(R) (39)

To balance the two subtasks, we set two hyperparameters λE

and λR as the weights for achieving the best performances
of joint learning.

4 Experiments

4.1 Datasets

To evaluate the effectiveness and adaptiveness of STER, we
conduct experiments on two sets of datasets from SemEval
Challenge Tasks [39–41]. One is provided by [11], and the
other is provided by [18]. They annotate aspects and opinions
in pairs based on the original SemEval datasets where
only the aspect terms are labeled. Moreover, Chen et al.
[18] annotates the pair-wise relation following the opinion
annotation provided by [32, 33]. Table 1 shows the statistics
of their datasets. Note that Chen et al. [18] keeps the reviews
without aspect-opinion pairs, so the number of sentences in
their datasets is more than [11].

4.2 Experimental settings

For the encoder, we adopt the uncased BERTbase model,
where the dimension of token representation, i.e., di , is 768,
and a dropout of 0.5 is applied to the output of the last
layer. We use BertAdam as the parameter optimizer, with
the fine-tuning learning rate of 2e-5 and the warmup rate
of 0.1. The training learning rate of STER is set to 0.001,
and after 20 epochs, it will decay as 98% of the original
level. The dimension of the hidden state dh is 300, and 5-
dimension is set to a syntactic level. Additionally, a dropout
of 0.4 is applied to the linear transformation of the hidden
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Table 1 Statistics of datasets

[11] [18]

Datasets #S #A #O #P #S #A #O #P

Train 1259 2064 2098 2356 3041 3693 3512 2809

Res14 Dev 315 487 506 580 – – – –

Test 493 851 866 1008 800 1134 1014 936

Train 899 1257 1270 1452 3045 2359 2500 1535

Lap14 Dev 225 332 313 383 – – – –

Test 332 467 478 547 800 653 677 380

Train 603 871 966 1038 1315 1205 1217 1231

Res15 Dev 151 205 226 239 – – – –

Test 325 436 469 493 685 542 516 516

Train 863 1213 1329 1421 – – – –

Res16 Dev 216 298 331 348 – – – –

Test 328 456 485 525 – – – –

#S, #A, #O, and #P denote the number of sentences, aspect terms, opinion terms, and aspect-opinion pairs, respectively

state. The maximum sequence length is 100 with a batch
size of 5. λE and λR are respectively set to 1 and 11 to
balance subtasks. We determine the above hyper-parameters
with cross-validation. In the end, we report the average
experimental results by running each model 5 times with
random initialization.

4.3 Evaluationmetrics

We adopt the frequently-used metric of F1-score to evaluate
the performances of models on both subtasks of AOPE,
i.e., entity recognition and relation detection. Moreover,
entity recognition can be divided into the aspect extraction
and opinion extraction subtasks. For entity recognition, an
aspect or opinion term may consist of several tokens. Only
when all of these tokens are correctly recognized, the aspect
or opinion term is considered to be correctly extracted. For
relation detection, in addition to the aspect term and its
corresponding opinion term are both accurately identified,
the average correlated degree of all token pairs belonging to
them should exceed a given threshold, then their pair-wise
relation is considered to be correctly detected. In our model,
the threshold is set to 0.5.

4.4 Baselines

To evaluate STER comprehensively, we select both pipeline
and joint learning models to compare.

4.4.1 Pipeline models

Since AOPE has not been proposed for a long time, most
ABSA studies just recognize the role of entities instead of

extracting aspect-opinion pairs. We select three advanced
models of them as half of the pipeline models:

RNCRF [32] A model of recursive neural network for
learning the high-level features. The output representations
of tokens are fed into CRF for entity recognition.

CMLA [33] A model using multi-layer attentions to
recognize the role of each token as well as the relations
between them. It co-extracts aspects and opinions with the
help of the detected relations.

RINANTE [17] A model that extracts aspects and opinions in a
semi-supervisedmanner. Their proposers present rules for auto-
matic mining of dependent syntax assisting entity recognition.

For AOPE, it is essential to introduce relation detection
units based on the results of entity recognition. We also
select three advanced models of them as the other half of the
pipeline models:

C-GCN [42] An extended graph convolutional networks
for relation extraction. It collects information on arbitrary
dependency structures and can also be applied to AOPE.

IOG [11] A model of three LSTM-like encoders for extract-
ing opinion words aiming at the targeted aspect. The
three encoders learn the information of the targeted aspect,
including the left, right, and global contexts.

SDRN-RD [18] The relation detection channel in SDRN,
which can calculate the correlated degree with the represen-
tations of two arbitrary tokens. SDRN is also our baseline
model and will be introduced in detail later.
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According to the experiments conducted on SemEval
datasets before, we take RINANTE+SDRN-RD [18],
CMLA+C-GCN [20] and RINANTE+IOG [20] as our
baselines of pipeline methods.

4.4.2 Joint learningmodels

To prove the advancement of STER, we also select three
models that jointly identify entities and relations as our
baseline models. All of them are the advanced models at
present.

SDRN [18] A synchronous double-channel recurrent net-
work where one channel is responsible for entity recog-
nition, and the other is responsible for relation detection.
For interaction, a synchronization mechanism is also set
up between them. The best performance of SDRN can be
achieved with several cyclic executions.

SpanMlt [19] An end-to-end model that sets the entity
granularity to span level instead of token level. After
passing BERT or BiLSTM encoder, all candidate spans are
used to perform entity recognition and relation detection
simultaneously.

GTS [20] A novel tagging scheme, Grid Tagging Scheme,
with which model can tag entities and relations simulta-
neously. To be specific, this scheme adopts a unified grid
tagging combining an arbitrary encoder and a designed
inference strategy to deal with AOPE.

SDRN has been determined to use the BERT encoder,
while SpanMlt and GTS use uncertain encoders. For unified
comparison, we all choose BERT encoding for them. In
addition, the above pipeline and joint learning models have

been experimented on the annotation datasets of [11] or [32,
33] in previous studies, and for convenience and fairness,
we mainly compare STER with them on their corresponding
annotation datasets.

4.5 Results and analysis

The results of experiments conducted on the annotation
datasets of [11] are shown in Table 2. Firstly, the perfor-
mances of pipeline models are not satisfactory, especially
for relation detection. Whether these models recognize enti-
ties before detecting relations or extract aspects before
identifying the corresponding opinions, they all suffer from
error propagation. Furthermore, there is a lack of interaction
between their subtasks. On the contrary, joint learning mod-
els can utilize the interaction to enhance the mutual heuristic
effect and avoid error propagation.

Among these joint learning models, it is evident that
STER achieves the best performances for entity recognition
and relation extraction subtasks on four datasets, even
compared with the advanced models of AOPE. On average,
for the four datasets, STER outperforms SpanMlt by 1.82%,
1.57% and 4.67% on AF, OF, and RF, respectively. For GTS,
STER outperforms its reproduced model by 2.19%, 2.15%
and 1.48% on the three metrics, respectively. For SDRN,
STER outperforms its reproduced model by 3.20%, 1.77%
and 2.02% on the three metrics, respectively. Based on the
above comparison results, we can conclude that SpanMlt
outperforms in entity recognition but underperforms in
relation detection compared to GTX and SDRN. SpanMlt
handles an entity at a larger granularity, i.e., a span, whose
role could be identified more efficiently and accurately.
However, there is no interaction between its two subtasks
except for sharing span representations, which may be one

Table 2 The experimental results on the annotation datasets of [11]. AF, OF and RF represent the F1-scores (%) of aspect extraction, opinion
extraction and relation detection, respectively.

Res14 Lap14 Res15 Res16

Models AF OF RF AF OF RF AF OF RF AF OF RF

CMLA+C-GCNa 81.22 80.48 63.17 – – 53.03 76.03 74.67 55.76 – – 62.70

RINANTE+IOGa 81.34 83.33 67.74 – – 57.10 73.38 75.40 59.16 – – –

SpanMltb 84.26 84.11 72.72 80.78 79.71 65.75 77.71 78.47 61.06 80.95 84.92 69.58

GTSa 83.82 85.04 75.53* – – 65.67 78.22 79.31 67.53 – – 74.62

GTS 83.10 84.49 74.65 78.73 77.86 64.61 78.11 78.25 68.29 82.31 84.30 74.31

SDRN 84.70 84.01 73.08 78.28 76.48 63.63 76.30 79.71 68.00 78.93 86.22 75.02

STER 85.85 85.89 74.96 81.06 81.03 67.64 80.44 80.91 69.30 83.64 85.66 75.89

aThe results are retrieved from [20]
bThe results are retrieved from [19]. SpanMlt does not publish its source code, so we only compare the results copied from their released paper

* The result is better than STER, but its corresponding reproduced result is worse than STER
Results in bold are the best results in the comparison
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of the main reasons why its relation detection performance
is limited. Even with small entity granularity, STER
still outperforms SpanMlt in the entity recognition task.
Moreover, the relation extraction performance of STER is
also higher than all baseline models. These results all benefit
from the valuable and targeted information as well as the
sufficient interaction between subtasks.

To prove that STER adapts to different annotation strate-
gies, we also conduct experiments on the annotation datasets
of [18], and the results are shown in Table 3. It is observed
that STER outperforms SpanMlt and SDRN on both annota-
tion versions, which indicates that STER is also applicable
to the datasets containing sentences without aspect-opinion
pairs. The proposers of SpanMlt have pointed out in their
paper that the performance of SpanMlt is limited in such a
dataset that contains some sentences without pair-wise rela-
tions. Removing the particular limitation from SpanMlt, we
can further prove the importance of interaction for AOPE by
comparing with RNCRF, CMLA, and RINANTE+SDRN-
RD, which lack the interaction between entity recognition
and relation detection.

In addition, although our network looks complex, the
training speed is not slow. STER is trained on the GeForce
GTX 1080 Ti. During the training phase, it executes 20
batches taking about 4 seconds, while SDRN takes about 3
seconds. As we discussed in Section 3.4.3, after switching
the input of each time step from sentence level to token level,
the complexity of the network is still within acceptable
limits when the number of tracking chains is set to 100.

4.6 Ablation study

To investigate the effect of relation gate, parallel archi-
tecture, and syntactic information on STER, we conduct

ablation studies on AOPE task. Table 4 reports the exper-
imental results on the annotation datasets of [11]. While
removing the relation gate, we adopt a similar algorithm
to calculate the correlated degree after passing the token
sequence through the changed network. This ablation model
obviously runs in a pipeline method. When the paral-
lel structure is removed, we use the hidden state at each
time step as the final representation of its corresponding
token. Furthermore, because our relation gate can not be
set up without the parallel architecture, we conduct abla-
tion studies in a superimposed manner. For example, in
the ‘- syntax’ experiment, the relation gate and the parallel
architecture are also removed, and only the standard LSTM
is retained. After removing the three critical components
in turn, it is observed that the performance of our model
degrades at each stage. It is reasonable because STER can
achieve interaction of subtasks and learn targeted informa-
tion with the parallel architecture. Moreover, the informa-
tion derived from the relation gate and syntax can provide
more clues for AOPE.

4.7 Case study

To clearly verify the importance of interaction between
subtasks and the effect of STER, some prediction results
of SDRN, STER, and the ablation model removing three
key components are presented in Table 5. In the first three
reviews, the ablation model fails to identify gold relations
or entities due to the lack of interaction. For example, the
results of relation detection can provide clues for SDRN and
STER to identify the role of ‘away’ in the third review, while
the ablation model can not exploit the clues. Furthermore,
with the help of entity tracking and rich information, STER
can capture more distant relations than other models, such

Table 3 The experimental results on the annotation datasets of [18]

Res14 Lap14 Res15

Models AF OF RF AF OF RF AF OF RF

RNCRFc 84.93 84.11 – 78.42 79.44 – 67.74 67.62 –

CMLAc 85.29 83.18 – 77.80 80.17 – 70.73 73.68 –

SpanMltc 85.24 85.79 – 77.87 80.51 – 71.07 75.02 –

RINANTE+SDRN-RDd 86.45 85.67 74.34 80.16 81.96 64.17 69.90 72.09 65.42

SDRNd 89.49* 87.84 76.48 83.67 82.25 67.13 74.05 79.65 70.94

SDRN 88.89 87.85 76.83 82.86 81.90 68.66 75.00 79.72 70.74

STER 89.31 88.27 78.45 84.06 82.32 70.80 75.79 80.55 72.12

cThe results are copied from their released paper
dThe results are retrieved from [18]

* The result is better than STER, but its corresponding reproduced result is worse than STER
Results in bold are the best results in the comparison
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Table 4 Ablation study on the annotation datasets of [11]

Res14 Lap14 Res15

Models AF OF RF AF OF RF AF OF RF

STER 85.85 85.89 74.96 81.06 81.03 67.64 80.44 80.91 69.30

- relation 84.34 85.43 74.39 80.80 79.18 65.70 79.63 80.93 68.59

- parallel 85.48 84.99 73.73 80.68 77.44 66.48 78.63 79.29 68.44

- syntax 84.35 84.13 73.29 80.79 77.38 65.23 78.59 78.36 67.32

Results in bold are the best results in the comparison

Table 5 Some predictions for AOPE in the test set of Res15 which annotated by [11]

The golden aspect and opinion terms in the reviews are colored as blue and red, respectively. The correct predictions are ticked, while the wrong
predictions are crossed

Fig. 4 Visualization of
correlated degree, where
different color intensities
represent different orders of
magnitude. The golden aspect
and opinion terms in the reviews
are colored as blue and red,
respectively



Synchronously tracking entities and relations in a syntax-aware parallel...

as the relation between ‘place’ and ‘worth’ in the third
review. Additionally, the extraction results of the last review
indicate that STER adapts to the annotation strategy well.
(‘great’, ‘value’) is an aspect-opinion pair in the general
idea, but not in the strategy of [11].

To further understand what STER has learned, we visu-
alize the correlated degree between entities in Fig. 4. It is
observed that STER accurately detects all aspect-opinion
relations with the highest correlated degree and can even
capture the distant relation between ‘potato balls’ as well as
‘buttery’.

5 Conclusion

In this paper, we propose a model for Synchronously
Tracking Entities and Relations (STER) to deal with
Aspect-Opinion Pair Extraction (AOPE) task. Inspired by
Recurrent Entity Networks (EntNet), we adopt a parallel
architecture to track all entities in a review. And then, we
integrate a designed relation gate with Ordered Neurons
LSTM (ON-LSTM) to utilize contextual, syntactic and
relational information to assist in both subtasks of AOPE,
i.e., entity recognition and relation detection. Moreover,
the two subtasks can achieve sufficient interaction in
STER due to their high dependence during calculation.
The experimental results show that STER outperforms
the advanced models of AOPE and adapts to different
annotation strategies of the same datasets. Of course, STER
still has room for further study. Following the structure
of ON-LSTM and avoiding an overly complex model, we
designed a unidirectional network. In the future, we will
continue to study whether a bidirectional network can help
improve the performance of STER when the complexity of
our network is reduced.
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